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Abstract

The objective of this thesis is to examine the feasibil-

ity of applying a vortex lattice method to propeller perfor-

*mance analysis. This method allows the calculation of span-

wise and chordwise pressure distributions on thin propeller

blades of arbitrary planform.

The research for this project involves the application

* *of a vortex lattice method to a propeller with twisted, non-

cambered, constant chord blades. The analysis assumes incom-

pressible,'ihvisci flow over thin sections. The helical

wake is modeled as a series of straight vortex filament seg-

ments.

A computer code has been developed which uses a vortex

lattice method to predict performance for propellers. Results

are shown for several operating conditions, using various

angle of attack distributions, numbers of blades on the pro-

peller, and advance ratios. Similar results are shown using

the blade-element theory for comparison. Results indicate

that this vortex lattice method is applicable to initial pro-

peller performance analysis.

.X



APPLICATION OF THE VORTEX-LATTICE METHOD

TO PROPELLER PBRFORMANCE ANALYSIS

I. Introduction

Background

Recent increases in.the cost of fuel have revived inter-

est in the propeller for next-generation aircraft propulsion.

Advanced propeller designs for turboprop applications are

being investigated by NASA-Lewis (Ref 1). These newer designs

have low aspect ratios (less than five), swept blades, and

six or more blades per propeller. The relative merits of the

newer designs have been investigated through wind tunnel and

Ir flight tests. The method most often used for propeller anal-

ysis (blade element, or strip theory) is not accurate for these

propeller configurations.

Problem Statement

A need exists for an analytical method which will give

an approximate pressure distribution on an arbitrary planform.

The vortex lattice method is chosen for this role because of

its widely demonstrated accuracy in wing applications.

The vortex lattice method developed here permits deter-

mination of both spanwise and chordwise distributions of lift

over blade surfaces, and thus it is possible to find the

bending and twisting moments of the individual blades.

1



Similarl, it is possible to use this method iteratively to

find the blade camber surface which will generate a desired

pressure distribution. This method has a great deal of po-

tential to become a powerful design tool, from both an aero-

dynamic as well as a structural standpoint,

Modifications to the vortex lattice method for modelling

propellers primarily consist of changes associated with the

wake. The wake produced by a wing is nearly planar, while

the wake of a propeller is helical. The wind velocity seen

by a wing is assumed to be constant over the entire wing.

The magnitude of the wind velocity is equal to the flight

speed. The wind velocity seen by a propeller at any point

on a blade is a vector sum of both the rotational and flight

speed of the blade. These changes require some approxima-

tions and computational routines which are not necessary in

the vortex lattice method for wings. With the advent of the

high-speed digital computer, the execution of these routines

becomes feasible.

To examine the accuracy of the vortex lattice method, a

comparison is made with a proven method of propeller analysis -

..,blade element theory. This method uses airfoil section theory

applied to spanwise sections (strips) of a propeller blade to

establish performance figures, these being thrust, torque and

efficiency. Empirical corrections are made in order to com-

pensate for three-dimensional (aspect ratio) effects,

2



compressibility, thickness and camber. Blade element theory

is widely accepted in predicting performance for blades with

traditional configurations (large aspect ratio, no sweepback).

Comparison cases are presented using configurations for which

the blade element method performs well.

Vortex lattice methods have been extensively applied to

thin lifting surfaces, typically wings. In the propeller

application, vortex lattice methods have several major advan-

tages over blade element theory. These are due primarily to

the method of modelling of the blade and the flow field. Vor-

tex lattice methods account for both interference effects due

to other blades and three dimensional effects due to a finite

* aspect ratr without any empirical correction factors required.

No panel-specific aerodynamic parameters (such as Cli and

aO are required, since the camber can be approximated by

placing a series of flat panels along the camber line. This

flexibility allows a great deal of freedom in choosing pro-

peller profiles, in that the user is not restricted to known

airfoil profiles.

Several problems exist with the vortex lattice methods

which are not encountered with blade element theory. A much

more detailed geometry description is required to accurately

model a configuration. An extensive program must be written

and verified. Finally, computational runs are more expensive

than those using strip theory. A vortex lattice solution

should not be used if strip theory may be adequately applied.

3



This analysis is potentially most useful for studying

non-standard propeller designs without requiring expensive

and time-consuming flight or w.,,d tunnel tests. The newer

propellers, with many blades and large chords, cannot be

effectively modeled by older methods. The objective of this

study is to evaluate a method that can be used to rapidly

investigate new propeller designs.

Assumptions

This vortex lattice method assumes potential incompres-

sible flow -On-each panel, the total velocity (equal to the

vector sum of flight speed and rotational speed) is calculated

at a central position and is taken as a constant over the

- entire panel. The geometric parameters relating to flight

conditions are applied in different parts of the solution:

Zero angle-of-attack geometry (including blade twist) is

represented in the main coefficient matrix, while angle of

attack is represented in the forcing function vector. The

blade is assumed to be rigid, with no deformation due to

pressure variations along the blade. The wake is assumed

to be fixed, with a constant helix angle (Fig 1).

4



II. Development of Vortex Lattice Methods for Winqs

Backaround

Vortex lattice methods have been developed for calcula-

ting performance of thin, swept wings. The methods are used

to find chordwise and spanwise distributions of lift and in-

duced drag. They are a member of the class of discrete singu-

larity methods. In this section, the basic concepts of a

vortex lattice method are described as applied to a wing.

Assumptions and Limitations

Most of the assumptions and limitations of the vortex

lattice method for wings are associated with the modeling of

the wake. The actual wake position for a wing at an angle of

attack is a curved stream surface, but is assumed to lie along

the wing chord line for analytical purposes. This assumption

is acceptable at small angles of attack, where the deflection

of the wake is small enough to be ignored. The model of the

wing takes the wing camber line as a rigid, fixed fluid

boundary.

Governing Equations

Vortex lattice methods involve the construction and solu-

tion of a series of simultaneous linear equations to find a

distribution of circulation on a lifting surface. The un-

knowns in these equations represent the circulation distribu-

tion on the lifting surface. The coefficients are geometrically

5



determined influence coefficients, each of which represents

the downwash at a given point (control point) per unit cir-

culation due to a given vortex. The forcing function repre-

sents the total downwash at a given control point. The gen-

eral form of the equation is given in Eq 1, where A is the

influence coefficient matrix, r is the circulation distribu-

tion vector, and W is the downwash velocity distribution vec-

tor.

[A] {r} = {w} (1)

The influence coefficient matrix A is determined by the blade

geometry. The downwash velocity vector is determined by

flight conditions. Equation 1 then becomes a statement of

the flow tangency boundary condition at control points on the

blade surface. A linear equation solver is used to solve for

the circulation vector r. Once r is known, the desired per-

formance parameters are calculated. The major task is to

determine this circulation vector.

Influence Coefficient Matrix Assembly

The first portion of the analysis that will be discussed

is the construction of the influence coefficient matrix, A.

In a vortex lattice method, a lifting surface that sheds

a continuous vortex sheet is approximated by a finite number

of horseshoe vortices. Each of these vortices is composed of

a bound vortex and a pair of semi-infinite trailing vortices.

6
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The wing to be analyzed is initially divided into a grid

structure, or lattice. A complete description of the lattice

is found in Appendix A. The bound vortex is placed along the

quarter-chord of each element, on the mean camber line of the

wing. Vortex filaments are shed from the ends of each bound

vortex. The trailing vortices are shed along the stream sur-

face coincident with the-wake due to the lifting surface.

For the physical wing, this wake follows a curved path, ini-

tially parallel to the bisector of the trailing edge of the
wing, and asymptotically approaching the free-stream direction

(Fig 2). For analytical purposes, the wake position is

assumed to be always parallel to the wing axis. This makes

. .7- the wake position independent of angle of attack. Since A

depends only on the locations of the wake and the control

points, A is also independent of angle of attack. In order

to find a solution for any angle of attack, only the forcing

function vector W must be altered. At small angles of attack,

this wake position assumption is acceptable, since the solu-

tion is insensitive to any reasonable wake location for wings.

The Biot-Savart Law is used to calculate A. The Biot-

.Savart Law states that the velocity induced at any point due

4 to a vortex filament of strength r and length dL is:

dv (2)
4w -I

where 3V is the incremental velocity vector induced at an

7



arbitrary point due to a vortex filament segment dL; r is

the strength of the vortex filament segment; and r is the

vector whose tail is located at the center of the filament

segment, and whose head is located at the given point (con-

trol point). This equation is evaluated over all incremental

* line segments dL and the total velocity (Wij) at point i due

to horseshoe vortex j is-found. This produces Eq 3, where

K

Ajj i -l 3

and K is the total number of dL-segments associated with

horseshoe vortex J. Kri is the vector from filament segment

K to control point i. Aij is a summation of this series of

vector cross product operations. For straight vortex fila-

ments, this summation can be evaluated using integrals whose

limits are established by the filament endpoints, and the

control point coordinates. This development is shown in

Appendix B. Thus,

A ij r j = wj (3)

..The influence of an entire horseshoe vortex is found by in-

tegrating over all three portions of the horseshoe (bound

vortex plus two semi-infinite legs), and adding the results.

These results constitute the elements of the influence co-

j efficient matrix A.

8



Eac . wing usually has a symmetric counterpart. This

symmetry may be exploited if the flight conditions do not

include yaw. For the port wing, only the y-axis coordinate

values are different than those of the starboard wing, and

only by a sign. Using this symmetry, the input geometry of

one wing is used to produce the coordinates of its mirror

image, which are used in-the calculation of A.

Calculation of the Boundary Condition Vector

To find a distribution of circulation on a wing, A must

be calculated at points where the flow conditions are known.

These are control points, located mid-panel span on the three-

quarter panel chord line on the camber surface of the wing

i(Fig 3). If N horseshoe vortices exist in a flow field, N

control points are required to enable the solution of the N

simultaneous equations.

The right hand side of Eq 1 is the boundary condition

vector, representing the component of the free stream velo-

city that is normal to the lifting surface at the control

point. The boundary condition requires that there be no

flow through the lifting surface. This condition is satis-

fied at the control point of each panel. The component of

free stream velocity normal to the lifting surface at the

control point must be cancelled by the velocity normal to

the surface at the control point that is induced by all of

the horseshoe vortices in the flow field (Fig 2). Therefore,

9



the bourdary condition becomes

W+ U (sin(ai - tan-l(az))) =0
... i  Go i  -x ;

where W is the induced downwash velocity, U, is the free-

stream velocity, ai is the known angle of attack of the panel,

and (dz/dx), is the local slope of the camber line (Fig 4).

For the case of the flat-plate at small angle of attack,

(dz/dx), = 0, and sin(ai ) = a i . Then,

l"iW i 
= -U'W a a (4)

This vector is the right hand side of the general equation 1.

The form of the equation becomes

VW " [Aijl{r I = -(U.- a i  (5)

The boundary condition vector is a product only of the free

stream (which is spanwise constant for a wing) and the panel

angle of attack (which is constant for a flat, non-twisted

wing).

Determination of Performance

Once A and the boundary condition vector are determined,

the circulation distribution is calculated. A routine is

used to solve the system of linear equations, determining the

strength of each horseshoe vortex. From a distribution of

horseshoe vortex strengths, and flight conditions, overall

wing performance is calculated.

10



Each horseshoe vortex is composed of a bound vortex and

two semi-infinite trailing vortices that are shed along the

wing axis. The Kutta-Joukowski Theorem states that lifting

force per unit span is equivalent to density multiplied by

the cross product of the circulation vector and the free

stream velocity vector. The cross product of a trailing vor-

tex vector and a free stream vector is zero since they are

parallel within the approximations made, so only the bound

vortex produces a force. This force is a vector sum of lift

and induced drag. The proportion of lift to induced drag is

determined solely by local angle of attack.

Total wing configuration lift and induced drag is the

summation of lift and drag for all of the panels in the flow

field, which is twice the value of the starboard wing for the

symmetrical case.

Wing pressure distribution is found knowing the total

panel lifting force, and assuming constant pressure over each

panel. The panel pressure is found by dividing the lifting

force by the panel area.

-o .
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III. Application of Vortex Lattice

Methods to Propellers

The propeller introduces some unique conditions into

the problem which require a more complex set of assumptions

regarding both the wake and the boundary condition vector.

Background

The vortex lattice method is selected as a solution

method to the propeller problem based upon the accuracy shown

in solving wing problems. The other primary advantage of

implementing a vortex lattice method is the adaptability of

the method to solution by digital computer.

Assumptions

A propeller can be viewed as a wing in a rotational flow

field. Since the vortex filaments are shed parallel to the

local total velocity, the wake that is shed by a propeller

is helical. In the case of the wing, the integration of the

Biot-Savart Law over an entire vortex filament can be per-

formed analytically because the modelled filament is straight.

The propeller wake cannot be easily solved in this manner

because of the helical wake. The complete solution for the

construction of the influence coefficient matrix is found in

Appendix C.

In the analytical procedure for the wing, the solution

is calculated with the trailing vortex filaments extending

12
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to infinicy. For the helical wake of the propeller, this is

neither practical nor possible because this requires an in-

finite number of calculations. To establish where the helical

wake no longer significantly influences the solution, trial

runs are required.

Influence Coefficient Matrix Assembly

The influence coefficient matrix A is found using a pro-

cedure similar to that used for the wing. The integration of

the Biot-Savart Law is performed using a numerical represen-

tation of each vortex filament as a series of discrete line

segments. Each line segment dL is a small arc which is repre-

sented by a straight line (Fig 5). The integral must be

evaluated for every line segment-control point pairing in the

flow field. The velocity per unit of circulation induwed at

a given control point due to a horseshoe vortex is calculated

by summing the Biot-Savart integrations of every dL for that

given horseshoe.

Multiple blades on a propeller configuration are arranged

symmetrically. A two-bladed propeller sheds two wakes, each

wake w radians out of phase with the other. In modelling a

symmetrical configuration only the base blade geometry is

entered. This base blade establishes the locations of the

control points and the horseshoe vortices. By symmetry, the

other (N-l) blades on an N bladed configuration will shed

trailing vortices at intervals of 2w/ radians. After per-

13
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forming the summation of integrations over all of the vortex

filaments of the base blade, the procedure is repeated with

vortex filaments displaced 2w/N radians. This is repeated

. for the vortex filaments from all (N-i) other blades. The

geometry of the remaining blades must not be implicitly

entered.

Boundary Condition Vector

The boundary requirements for the propeller problem are

. the same as those for the wing, in that no flow is allowed to

pass through. the control points. The components of the bound-

ary condition vector for the propeller are more complex than

those of the wing boundary condition vector..

lei' The right hand side of the B.L. eq. is the vector

{-U. * ail. In the case of the flat, untwisted wing, this

is constant for all panels. For the propeller, U. becomes

the local total velocity (Vtot), equal to the vector sum of

flight .velocity and panel rotational velocity. The flight

direction is normal to the plane of rotation (Fig 6), there-

fore

V = [U 2 + (r.w)2] (6)

* This vector points in the direction of the wind seen by

the propeller blade,

B - tan- ( )I r*w

14
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Each pan. is oriented parallel to this local total velocity

vector at the zero local angle of attack condition. Angle of

attack distribution is a design parameter. This distribution

is a function of the twist distribution and flight conditions.

In the final construction of the boundary condition vec-

tor, the assigned angle of attack is multiplied by the magni-

tude of the local total velocity for each panel. The product

represents the component of local total velocity that acts

normal to the panel surface, opposite and equal-to the magni-

tude of the downwash induced at the control point by all of

the vortices in the flow field.

Determination of Performance

With A and the boundary condition vector, the distribu-

tion of circulation is calculated using a linear equation

solver.

Once the circulation distribution along the propeller

blade is found, the performance parameters are calculated.

Since viscous effects are not included in this method, the

lifting forces act normal to the panel. Lifting force is

found using the relationship

Lj (p • bj •VTTj x Tj) (7)

where p is density, bj is the length of the bound vortex of

panel J, and VTOT is the total panel velocity, combining

flight and rotational velocity of section J. At small angles
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of attac',, the local velocity parallel to the panel can be

approximated by the local total velocity. For small angles

of attack, lift is represented by

Lj = p bj IV .jl • jI

The lift coefficient is found using the relationship

CLI (8)
h piVJOT,j oAj

For the test cases, where VTOT is perpendicular to the bound

vortices, and the area (A) is well approximated by the pro-

duct of panel span and panel chord Cj, lift coefficient can

be calculated by the relationship

Ct 2"r1  (9)
VTOT, J Cj

This panel lift coefficient is normalized based on panel

dynamic pressure, a function of the local total velocity.

An exact solution requires dynamic pressure to be a function

of the component of local total velocity parallel to the

panel. For small angles of attack, this component is accur-

ately represented by the local total velocity.

Thrust and torque are calculated from lifting force.

The lift force acts normal to the surface of the blade at

the control point, resulting in force components which act

both in the direction of flight and in the direction of

16



rotation (Fig 6). The component of force acting along the

flight path is thrust. The panel component of force acting

in the rotation direction, when multiplied by the distance

of that panel from the axis of rotation (the radius), is the

panel torque. Bending moment is found by multiplying panel

radius by panel thrust and summing over all panels. Propeller

efficiency is found by dividing the total output power (equal

to the product of thrust and flightspeed) by the total input

power (the product of torque and rotational velocity).

=T U. (10)

Pressure distribution on the blades is a function of

the panel lift and the panel area. Pressure is assumed to

be uniform over an entire panel, which is acceptable for

small panels. Section pressure is calculated by dividing

the panel lifting force by the wetted area of the panel.

Calculating this for every panel produces a distribution of

pressure over the entire blade.

This process is used to completely define' the perfor-

mance parameters of a propeller with thin, uncambered, twisted

blades in an incompressible, inviscid flow field.

17
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IV. Approximations Used for

Numerical Implementation

This section discusses the approximations used in the

numerical integration of the analytical solution derived in

Appendix C.

An analytical solution for a line integration, such as

the integration in Appendix C, uses an infinite number of

infinitesmal line segments to represent a line. A numerical

solution uses a finite number of small line segments to

approximate the-analytical solution. The size assigned to-

each line segment determines the level of accuracy of the

- -:solution. Integrations using very small line segments pro-

duce accurate solutions, but require more computation time

than those using larger line segments.

The size of the line segments of the wake filaments is

determined by the size of the differential angle (d) multi-

plied by the distance from the axis of rotation to that

specific filament. For all of the test cases run in this

analysis, the differential angle (de) is assigned a value of

2w/100 (Fig 5). Several check runs show virtually no change

in solution for smaller values of d. Filament segments

larger than this produce numerically inaccurate results, as

the assumption of small filament segments becomes increasingly

inappropriate. For all grid systems, particularly those with

panels having aspect ratios significantly less than unity,

,° ,:1 8
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the user must be sure that no filament passes through a con-

trol point, or the solution will diverge.

The use of the Biot-Savar. Law, as one of the inputs, a

vector with magnitude equal to the distance between the line

segment and control point of interest. In implementing a

numerical solution of the Biot-Savart Law with finite-length

line segments, an approximation must be made for the point

location of a line segment. The point used in the model to

represent a line segment is the midpoint of the-line segment.

The spanwise axial velocity profile is assumed to be

constant for the model. In actual propeller flow fields, the

velocity near the hub is greater than the velocity across the

rest of the propeller face. Possible direct errors which may

result from neglecting this include a faulty angle of attack

distribution near the hub, and incorrect dynamic pressures

near the hub.

The influence of a vortex filament segment on a control

point diminishes with the square of the distance between the

two. The first several segments, located on or near the blade,

usually have the most impact on the influence coefficient.

After less than one-quarter turn of the wake, the effect of

the individual line segment is very small. Since the wake

position varies with advance ratio, the position at which the

remaining infinity of line segments becomes insignificant is

defined in terms of diameters downstream of the configuration.a
The lift coefficient distribution for a case in which the wake
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is truncated five (5) diameters downstream is the same as that

distribution for a case in which a wake is truncated ten dia-

meters downstream.

20



V. Outline of ProQram

This section discusses the layout of the program used to

implement this vortex lattice method.

The mesh generator takes the input geometry which de-

scribes the planform and divides it into an M x N grid, where

M is the number of spanwise strips and N is the number of

chordwise divisions. It also establishes the locations of

the bound vortex endpoints, and the locations of.the control

points.

The assembler oversees the construction of A, the influ-

ence coefficient matrix. The assembler selects a control

point identifier and a horseshoe vortex identifier. The
tie driver subroutine recovers the control point coordinates and

the bound vortex endpoint coordinates from memory. A helix

generating routine is commanded by the driver to provide dL

(incremental filament) endpoints, which are transferred to

the kernel routine. The kernel routine uses the control

point coordinates and the dL endpoints to calculate the in-

cremental velocity induced by the dL on the designated control

point. These are velocities per unit circulation of the

horseshoe vortex. The driver sums the induced velocities as

th kernel routine calculates them. As the driver completes

one control point-horseshoe vortex pair, the summed induced

velocity per unit circulation value is stored in memory by

the assembler as a coefficient of A. This procedure is
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repeated until all values of A are calculated.

The boundary condition vector routine is the next rou-

tine called by the main routine. The flight 'and rotational

speeds are used to find the local total velocity at each

panel. These panel velocities are multiplied by the panel

angles of attack (an input parameter) to determine the com-

ponents of local total velocity that act normal to the panel

at the control point. These values are calculated to repre-

sent the overall velocity induced at the control points,

since the sum of the normal local velocity and the velocity

induced must equal zero to satisfy the boundary condition.

These values are stored in memory as the boundary condition

vector.

The IMSL routine LEQT1F retrieves the boundary condition

vector and the matrix A from memory, and solves the system of

equations {ri = [A]- 1 {W} for the values of circulation.

The blade performance routine accesses the flight condi-

tion and circulation values. These are used with the blade

geometry to calculate panel lifting force, and ultimately,

thrust and torque values for individual panels. The panel

.values of thrust and torque are summed to provide configura-

tion thrust and torque.

22
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VI. Results

Initial Verification

To test the program, it is run with inputs which simu-

late a wing in a uniform flow. This is accomplished by set-

ting hub and tip radii very large, setting axial velocity

very small, and truncating the wake at one-twelfth of a revo-

lution (Fig 7). The local total velocity along this config-

uration is virtually constant, and the wake filaments essen-

tially straight. The resulting values of circulation match

experiment&land ahalytical values of circulation for thin-

wings (e.g., those of Ref 4). This shows that the mesh gen-

eration routine, the matrix assembly routines, the boundary

condition routine, and the linear equation solving routine

all perform correctly. The performance routine is not tested

in this run, since torque and thrust are not relevant factors

for a wing. Manual calculations show that this routine works

correctly.

Description of Test Cases

Test cases are established which approximate the typical

operating regime of propellers. In the test cases, a base

blade configuration is used which has the following character-

istics.

Spanwise sections 10

Chordwise sections 1

23



Chord 1 ft

Propeller Diameter 16 ft

Hub Diameter 4.8 ft

These figures were chosen for ease of comparison with the

blade element method. The resulting blade is shown in Fig 8.

The blade element routine used divides the blade into seven

unequally spaced blade segments (skewed toward the tip),

therefore a lattice with more (ten) equally-spaced elements

is appropriate for comparison. No comparison cases were run

with more than one-chordwise section, since the blade element

method is incapable of analytically producing chordwise per-

formance information.

A comparison is desired for a variety of flight condi-

tions and propeller configurations. These configurations are

run, using both the blade element and vortex lattice methods,

to represent changes in the number of blades, the advance ratio,

" - and the angle of attack distribution, on each blade.

Two and three bladed propellers are analyzed in the test

cases for two reasons. First, blade element theory is well

suited to analyzing propellers of this size. Furthermore,

the amount of computer time required for the vortex lattice

method is proportional to the square of the number of blades

in a configuration. Two and three blades were chosen in the

interest of economy, and in the interest of maintaining a

good level of confidence in the blade element theory.
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The advance ratio is fixed at either 1 or 2 for all of

the cases. Advance ratio (J) is a function of flight speed

(Umn) and rotational speed (n) -r a propeller; for the cases

run, rotational speed is fixed at 1000 rpm, and flight speed

is varied to produce the desired advance ratio. These advance

ratios bracket typical operating regimes for propeller air-

craft in a cruise mode.-

Conventional propeller blades have a relatively flat,

parabolic angle of attack distribution, with the-,highest strip

design angle of attack located around mid-span. Two distri-

butions of angle of attack are used in this analysis. The

first distribution assigns all strips a five (5) degree attack.

angle to the relative'wind. The second distribution assigns

each strip a spanwise-varying quadratic angle of attack dis-

tribution, with the angle of attack equal to five degrees at

mid-span, and two degrees at the hub and tip.

Table 1 shows the input conditions for all of the cases.

Discussion of Results

As previously mentioned, all of the test cases are run

at advance ratios of 1 or 2. For all of the cases, the effect

of the wake becomes negligible after five or less revolutions,

regardless of the number of blades. The results of varying

the wake truncation point is shown in Table 2. The cases

shown in Table 2 are lift coefficients for a single bladed

propeller run with the conditions given for Case 1. The lift
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TABLE 1

Case Descriptions

Case Number of Advance alpha

Number Blades Ratio Distribution

1 2 1 Constant

2 3 1 Constant

3 2 - 2 Constant

4 3 2 Constant

5 2 1 Quadratic

6 3 1 Quadratic

7 2 2 Quadratic

8 3 2 Quadratic

coefficients converge to the fourth decimal place after four

revolutions. Thetip strips are marginally less sensitive to

wake truncation than the strips near the hub. The hub strips

are positioned closest to the axis of propeller rotation, and

are the strips most sensitive to the total array of shed wake

filaments. In the hub position, the difference in lift co-

efficient between the single rotation and five-rotation case

is less than 3%.

The overall comparisons of the blade element cases to

those of the vortex lattice method are shown in Table 3.

Graphic displays of the comparison of spanwise distribution

of lift coefficients are shown in Figure 9. Fig 10 shows
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S .. the strip lift coefficient distribution for a Case 1 run

with 10 strips and 5 chordwise sections. Fig 11 shows the

strip lift coefficient distribucion for a Case 1 run with 10

strips and 10 chordwise sections. Comparison with Fig 9a

shows that the strip lift coefficient distribution for a 10 x

1 case is the same as that for a 10 x 10 case. The conver-

gence of the solution based on number of chordwise sections

is assumed for all other test cases. A spanwise and chord-

wise lift distribution calculated for Case 1 with 10 chord-

wise sections and 10 spanwise strips is shown in Figures 12.

TABLE 2

Effect of Varying Wake Truncation on Section

Lift Coefficient for a Single Bladed Propeller

LIFT COEFFICIENT COMPARISON

RADIAL FRACTION

#REV .3341 .4024 .4707 .5390 .6073 .6756 .7439 .8122 .8805 .9488

1 .3281 .4091 .4357 .4415 .4370 .4253 .4066 .3780 .3320 .2465

2 .3260 .4067 .4333 .4392 .4349 .4235 .4050 .3766 .3308 .2457

3 .3255 .4061 .4328 .4387 .4344 .4230 .4046 .3763 .3305 .2455

4 .3254 .4059 .4326 .4385 .4342 .4229 .4044 .3761 .3304 .2454

5 .3253 .4059 .4325 .4385 .4342 .4228 .4044 .3761 .3303 .2454

Table 3 reveals some interesting trends. The vortex lat-

tice method shows a much greater sensitivity to the presence

..
'  of multiple blades in the flow field than the blade element
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method. This sensitivity is partially due to the wake model,

which does not alter the wake shape to reflect an increase in

flow velocity through the propeller face. With this unaltered

wake positioned unrealistically close to the propeller, the

inverse-squared distance term of the Biot-Savart Law causes

inaccuracies in the results.

TABLE 3

Comparison of Overall Performance - VLM vs BEM

VORTEX - LATTICE TEST RUNS

CASE THRUST POWER INPUT POWER PERCENT
NUMBER COEFFICIENT COEFFICIENT (SHP) EFFICIENCY

1 .02580 .03231 501.9 80.0
2 .02936 .03674 570.8 80.0
3 .03062 .07335 1139.4 83.5
4 .034S9 .08356 1298.0 83.5
5 .01975 .02357 366.1 83.9
6 .02255 .02691 418.1 83.9
7 .02374 .05471 849.9 86.7
8 .07140 .06255 971.7 86.7

BLADE .- ELEMENT COMPARISON CASES

CASE THRUST POWER INPUT POWER PERCENT
NUMBER COEFFICIENT COEFFICIENT (SHP) EFFICIENCY

1 .03268 .03594 558.2 90.9
2 .04751 .05159 801.4 92.1
3 .04096 .08719 1354.5 94.0
4 .05991 .12745 1979.8 94.0
5 .02546 .02623 407.4 97.1
6 .03561 .03806 591.2 93.6
7 .03106 .06512 1011.6 95.4
8 .04538 .09541 1482.1 95.1
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The blade element method predicts total power input 10

to 20 percent higher than the vortex lattice method for the

two-bladed cases. The three bladed cases show differences in

input power of as much as 60 percent. This can be attributed

to the wake position error as well, since the inaccurately

close wake acts to decrease both thrust and torque of a pro-

peller.

One of the main problems in using the blade element

method for the inviscid, incompressible, thin non-cambered

propeller is that all of the tabulated data in the supporting

document include all of these effects to some degree. There-

fore, the accuracy in using the blade element method while

. qattempting to suppress these effects is questionable, as can

be seen in some of the ideal efficiencies in Table 3.

Comparison of the efficiencies of vortex lattice method

with those of blade element theory show a significant varia-

tion. The blade element method predicts efficiencies ten or

more percentage points higher than those predicted by the

vortex lattice method. Two factors cause this deviation; the

artificial removal of compressibility effects from blade ele-

ment theory, and the inaccurate positioning of the wake for

7 vortex lattice method. A multiplying factor which includes

the effects of compressibility is indeterminate at Mach num-

bers less than 0.4. The incompressible (M=0) factor is

4extrapolated from a graph used in the blade element report.
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Availability of the compressibility factor for low mach num-

bers and a wake location routine would help alleviate this

discrepancy. In Table 3, one of the blade element theory

case efficiencies was calculated to be 97 percent. This fig-

ure is optimistic and can be attributed to the fairly coarse

integration approximations required to calculate total thrust

and torque figures, as well as the inability of the blade

element method to accurately model non-typical propeller flow

conditions (thin flat blade, inviscid incompressible flow).

Comparison of the lift coefficients of each case show

mixed results. For all cases, the vortex lattice method pre-

dicts lower lift coefficients than blade element theory. The

overall shapes of the lift coefficient-versus-radius curves

were very similar, the greatest disagreement being with the

distribution near the hub. This is to be expected, as the

actual hub has not been modeled in this application of the

vortex lattice procedure.

Error Analysis

The first run of the program simulated a wing, as de-

scribed earlier. The results agreed very well with those

using conventional vortex lattice methods for wings, as well

as with experimental data (Ref 4). Some of the disagreement

of trial case results with those using known methods for

multiple-bladed configurations are attributable to changes

in the vortex lattice method associated with the rotating of
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the flow field. These problems can be broken down into three

areas:

1. Oversimplification of the wake model

2. Making the influence coefficient matrix
independent of angle of attack

3. The hub model

The error analysis section addresses each of these

problems.

The wake is ndelled as a rigid helix with constant helix

angle 8, equal to tan-l(Uw/Rw). In an actual propeller flow

field, the-momentum theory (Appendix E) indicates that the.

wake extends axially and constricts radially as it moves

downstream of the propeller (Fig 13). The helix angle must

S.. change with axial position to correctly model the wake.

. The vortex lattice model for a wing does not require an

accurate wake model because the effect of the wake is negli-

gible at those points where the wake position is very in-

accurate (far downstream). The influence of the wake of the

propeller does not decay as rapidly, but rather has a period-

ically decaying influence on the blade. The non-axially-

extended wake model positions the shed vortex filament seg-

ments too close to the propeller, artificially inducing an

unrealistically high level of downwash on the blade. When a

multiple-bladed configuration is modeled, this error is even

more pronounced, as shown by the differences in power figures.

* . The influence coefficient matrix is independent of angle
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of attack. This assumption is appropriate for the planar

wing at small angles of attack, but is inadequate for the

propeller. In a flow field which includes a very dense

assembly of blades and rotating wakes, the accurate locations

of all control points and bound vortices are critical to

finding accurate results. A model with many blades, low

aspect ratios, and low advance ratios at high angle of attack

would be very sensitive to wake position. The inverse-

squared distance term of the Biot-Savart Law forces the user

to input accurate blade positions in order to produce accurate

results.

The performance trends near the hub show significant

deviation from those of the comparison method. Two factors

cause this discrepancy. The first is the lack of a model of

a hub, which is a solid axisymmetrical body on the axis of

rotation. The strip closest to the axis of rotation in the

configuration is effectively modelled as a tip section due

to the absence of the hub model, therefore the circulation

is iow. A model is needed which analytically places a solid

body on the axis of rotation to eliminate this tip effect.

The second factor is the assumption of a constant axial vel-

ocity distribution across the propeller face. The hub acts

as a flow constrictor, causing the flow about the hub to

accelerate. The hub generates an increase in thrust and

torque from the hub strip that is not represented in the

current model.
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VII. conclusions and Recormirnrdations

The test cases show that the vortex lattice method pre-

dicts the lift coefficient trends reasonably well. Several

improvements that would enhance the accuracy of the method

include the following:

1. Modify the modeling of the wake to account for exten-

sion due to the increase in the axial velocity of the free-

stream, as demonstrated by the momentum theory. This will

force the solution to be iterative, but also attenuate the

extreme sensitivity of the routine to the presence of multiple

blades in the flow field. Since induced velocity is a func-

tion of the inverse-squared distance from control point to

wake filament segment, small changes in the wake position

produce very significant changes in lift coefficient.

2. Include camber for the modelling of realistic plan-

forms in order to model actual propellers. Doing this would

allow for comparisons with existing propellers with known

performance characteristics.

3. Modify the lattice generator to include arbitrary

geometry. This modification would perform a series of bi-

quadratic coordinate transformations on an input geometry,

and establish a complete lattice configuration compatible

* with the rest of the program. This could include the modifi-

cation suggested in 2.

4. Include a hub model. Placement of an analytical
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solid body on the rotational axis would correct the distri-

bution of velocity on the propeller face, and moderate the

dip in the lift coefficient near the hub. This solid body

could be represented by a series of ring vortices or sources

centered about the axis of rotation.

5. Add a compressibility correction that accounts for

high but subsonic tip mach numbers. A Prandtl-Glauert trans-

formation could be used.

There is a significant amount of room for growth with

this method. Initial results indicate that even the coarse

model used produces impressive correlation with blade element

theory especially for blade circulation distribution. The

method's ability to produce chordwise pressure distributions

is also valuable as an analysis tool. It is presumed that

even greater accuracy is attainable, once these improvements

have been implemented.
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. Appendix A - Construction of the Lattice

In a vortex-lattice method, a lifting surface is divided

into a grid for analytical purposes. The spanwise divisions

are made parallel to streamlines, coincidental with the

trailing vortex filaments. Chordwise divisions are made

along constant-percent-chord lines. For the wing, this pro-

duces a series of parallelogram-shaped lifting panels whose

sides are straight (Fig 14). Horseshoe vortices are super-

imposed on these lifting surfaces. Each horseshoe is com-

posed of three vortex filament pieces. Incompressible, thin

airfoil theory indicates that the aerodynamic center of a

surface is at the quarter-chord. For this reason, the finite

(bound) vortex is placed along the panel quarter-chord. This

bound vortex has endpoints located on the panel edges. The

two trailing vortices comprise the rest of the horseshoe

vortex. Each of these trailing vortices has an endpoint at

the bound vortex, and trails off along a streamline to in-

finity. The three pieces form a horseshoe vortex. Note that

the actual trailing vortex filaments are coincident with the

panel edges, but are shown displaced for clarity in the fig-

ures.

Each horseshoe vortex is associated with one lifting

panel. In order to model the entire flow field, the horse-

shoe vortices from all panels are assembled, thus forming a

vortex lattice (Fig 14). The vortex lattice method
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mathemat: zally models this lattice.

* The circulation at the tip of a three-dimensional wing

must go to zero. A large number of spanwise strips is re-

quired to reasonably approximate this condition, using the

mesh described above. A method which provides a more accurate

solution to the problem (given the same number of spanwise

divisions) is implemented. Hough (Ref 2) indicates that the

tip should be inset by one quarter of a panel span. This

has been shown to more accurately represent the absence of

lift at the tip (Ref 3).

In this'method, a given configuration is initially divi-

ded into a grid in the manner previously described. The grid

is assumed to have N spanwise divisions and an overall span

of length B (Fig 14). The panel span, b, is equal to B/N.

" . The modification is implemented by decreasing the size of b

to b, such that

B- (Nb) = .25-b

which satisfies the quarter-tip inset requirement. Fig 3

shows the resulting configuration. Note that Ab is equal to

V/4, as prescribed by Hough. Solving for b, then,

B

Hough shows that convergence to an accurate solution is found

with significantly fewer strips than the vortex lattice solu-

tion not using the quarter-tip inset.
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Each panel has a point at which the flow tangency

boundary condition is satisfied. This is the control point,

located at the panel three-quarter chord point, centered

between the trailing vortices. Selection of the three-

quarter chord point is justified in the following discussion

from Ref 4.

The bound vortex filament is placed at the panel quarter

chord (Fig 14). This filament induces a velocity v, where

V r -

at the control point of the panel, which is a distance r from

the bound vortex. In order for the flow to be parallel to

the wing at the control point, the freestream flow must be

deflected through the angle of attack. This angle of attack

can be approximately described by

Sa sina
VTOT 2 7rVTOT

For a flat plate at small angle of attack, thin airfoil

theory shows that Ct(,= 21. From this, Cj = 2,ra, and panel

lift is

*v v2
pVTOT.C. 2 a P-V ToTr

Combining these relationships

2 r
PVTOT 'C'2rVToT P'VTOT"r

I
Then, solving for r,
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r = C/2

Thus, the three-quarter chord point is an appropriate loca-

tion for the control point. '" .s position is typically used

in vortex lattice applications.

For the propeller case, streamlines are not rectilinear,

but helical. To model the propeller in a manner consistent

with a vortex lattice method the spanwise divisions must

follow streamlines. Using this framework, the spanwise

divisions are made such that each division line'lies along

a line of constant distance from the axis of propeller rota-

tion (Fig 15). Chordwise divisions are made along lines of

constant-percent chord, similar to the method applied to the

wing analysis.

Control points are located at the three-quarter-chord

lines, just as in the case of the wing. Each control point

is placed along the mean radius of its panel in order to be

properly centered between the filament legs.

Tip inset is established in a manner similar to that of

the wing. In the analysis, the wing span B is replaced by

the distance from the propeller center of rotation to the

tip.

The entire lattice with quarter panel tip inset and

trailing vortices for the propeller is shown in Fig 16. This

configuration is for a propeller using three spanwise dtvi-

sions and two chordwise divisions.

39



Appendix B - The Planar Wing Case

In this appendix, the procedure for calculating the lift

on a wing in a uniform flow field will be described. The

discussion follows that in Ref 4.

The velocity induced at a point due to a vortex filament

segment of strength rn and length dt is described by the Biot-

Savart law,

dv r= n ( B-14 -l r 13

where r is the vector from the filament to the point. Refer-

ring to Fig 18a, the magnitude of the induced velocity is

dV= rn sinedt B-2
47rr 2

For the wing, the velocity is induced by a horseshoe vortex

composed of three straight filament segments. The effect of

each segment is best calculated separately. The induced

velocity is found for an arbitrary line segment AB, with

vorticity vector directed from A to B. Let C be an arbitrary

point in space whose normal distance to line AB is rp. From

geometry,

r r
r Und de B-3

sine sine

Integrating to find the velocity magnitude,

V ED fe2 sinede - rn (cse cose
C. e 81  P s1-c 2
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For the 'nfinite vortex filament, e1 goes to 0, and e2 goes

tow, so

V - 2ir B-5

p

which is the two-dimensional solution for induced velocity.

Using the vector designations of AB, AC, and BC as shown in

Fig 18a,

Ixr2 ror_r= Irlxr2 cos = r0 " cos2 = 0"2 B-6
r r0 r r0 r2

The direction of the induced velocity is described by the

unit vector

rlxr
B-7

which, when substituted into Eq B-4 produces

Ln i = x F2  (j
47 x F2212 [r0 (r - r2 )] B-8

S 21 r1  2

This is the general equation for the induced velocity due to

a line vortex in the vortex lattice method. The following

description shows how this can be applied to a horseshoe

vortex.

Equation B-8 is used to find the velocity induced at a

point in space by the horseshoe vortex shown in Fig 18b.

Segment AB is the bound vortex, coinciding with the panel

quarter chord. The trailing vortices are parallel to the

" .x - axis. The resultant induced velocity vector is found by
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summing Lhe effects of each vortex filament.

For the bound vortex, segment AB,

ro AB (X 2n-X )i + (y 2-yln)j+ (Z 2-z ln)k

r1= (X-X1 l)j + (Y-Yln)j + (Z-Z n)k

r= (X-X 2 n)i + (yy~~ + (Z-Z 2 n)k

Using Eq B-8 to calculate the velocity induced at some point

C(x,y,z) by vortex filament AB, (see Fig 18a),

W4 *VA~ T 'ACABACAB 1 '

where

FAClAB r1 x

= [ Y-yln (Z-Z2n) - y-~n(Z-Z3n) '2

-[ (X-Xln) (zz 2 n)-(Xx 2 n)(Z-Z3 n) U

ln) (Z- 2 n) - (- 2 ) (Z-Zn) 1

+Uxx )(z-z )1X-X )(Z-Z~ ~2

+U(X-X n) (y-y2n)-(X-X2 n) (y-y3n) 
2 }

and

(FAC 2 AB=( r ro. 2
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*.- {(x 2 n-x In) (X-X1 2)+(y2n-ly -y1 ) ~ n-ln(z-z1n)]/

-( 2 nX 1 ) +(X-X 2 n 2n Z~~i)(ZZ~

To find the velocity induced by the trailing vortex that

extends from A, the velocity induced by the collinear, finite-

length filament AD is first calculated. Since r is in the
0

direction of.-the vorticity vector,

r DA =(X In-X 3n)i

"1  (X-X3 n)i + (YYn3 + (Z-Zn)'k

r= (X-X n)i + (YYnJ+ (Z-Zln )k

as shown in Fig 13b. Thus, the induced velocity' is

VA = n {FAClAD}{FAC2AD)

where
(Z-Z In)T + (Yln-Y)V

{FAClADI = (- n 2 +Yny 2 xnI)

and

{FAC2AD) =(X3n-Xln) [(- X n2 1
3n +(-l)Z ZZn

[+ - 7- X-
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Letting x 3 go to infinity, the first term of {FAC 2 AD goes

- to 1. Therefore, the velocity induced by the vortex fila-

ment which extends from A to infinity parallel to the x axis

is given by

rn (Z+Zln)a+ (Yln-Y) ] [ X - XlnVA.- 4 Z Z)- 1 +2 ( -l2}3
l(Z+Zin) 2+(Yln_ 12 1 { (X-Xn) 2+ (yY 1 n) + (Z-Zn) 2n

B-10

Similarly, the velocity induced by the vortex filament

that extends from B to infinity parallel to the x axis is

, -rn- [(Z- 2na+(y2n-Y) 1 + X - X2n
E6 (ZZ ) 2+ 2 9} 2(2n_)2

L 2n (+(y2 -Y)) + 2n 2+ (ZZ2n)2}

B-11
-B-l

'7 The total velocity at an arbitrary point (xy,z) due to

a horseshoe vortex representing a portion of a lifting sur-

face (panel) is the sum of the components given in Eqs B-9 to

B-11. The point (xy,z) is designated the control point of

panel m, with coordinates (xmYm m  The velocity at this

mth control point due to the horseshoe vortex representing

the nth panel is designated Vm,n. From Eqs B-9 through B-Il,

Vm n =Cm, n rn B-12

where C is the influence coefficient which depends strictly* Cm,n

on the relative geometries of the nth horseshoe vortex and

the mth control point. Since the governing equation is
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m

linear, the velocities induced by the 2N vortices are added

together to obtain an expression for the total induced velo-

city at the mth control point;

2N
vM z EC r B-13m n~lm,n n

* There exists one such equation for each control point, or a

total of 2N equations.

Using the above development, it is possible to find the

velocity induced at any point in space, given the geometry

of the problem and. the circulation strengths of all of the

vortices. These strengths are not initially known, however.

To find these strengths, it is necessary to establish a boun-

dary condition. The boundary condition is that the surface

must be a stream surface, hence the flow is parallel to the

surface at every control point (the control point locztion

described in Appendix A). To satisfy this condition, the

total induced velocity at a given control point must be can-

celled by the component of freestream velocity that is normal

to the surface. Referring to Fig 4, the tangency condition

for no dihedral yields

-umsin6 + wmcos 6 + U sin (a-6) = 0 B-14

where 6 is the slope of the mean camber line at the control

point, or

6 = tan -
1 ()

45



For wingz where the slope of the mean camber line is small

and which are at small angles of attack, this equation can

be approximated by

-um 6 + wm + U(a-O6) 0 B-15

For the case of the flat plate, this further reduces to

w UC~a B-16

These approximations are consistent with the assumptions of

linearized theory. The unknown circulation strengths required

to satisfy these boundary conditions are found by solving the

system of linear equations developed earlier in this appendix.

Eqs B-9 through B-15 are those for a VLM where the trail-

ing vortices are parallel to the x axis. These equations can

be applied to a relatively simple geometry, a planar wing

(one that lies in the x-y plane). For a planar wing, Zln =

2n = 0 for all of the bound vortices. Furthermore, zm = 0

for all of the control points. Thus, for the planar wing:

VAB -1 T(X -Xn)yI
S( ln)(Ym-Y2n)-(Xm-X2n)(Ym-yln )

(X2n-Xln) (Xm-Xln)+(y2n-yln) (ym-yln)
S((XXln) 2+ (ym_yln ))2

_ (X2n-X-yl n) (Ym-Yln)]

((XmX 2 n) 2 + (ymY 2 n) 2 )k
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-- rn k 1+ Xm - X lnS4 Ym ((Xm Xn2+(ym-yln

- rn k [ + xm - X2nB,, 4w y2ln2)m

2 Y2 -YYm ((XmX2n) +(ym B-16

Note that, for the planar wing, all three components of the

vortex representing the nth panel induce a velocity at the

control point of the mth panel which is in the z direction

(i.e., a downwash). Therefore, we can simplify Eq B-16 by

combining the components into one expression:

WM, Wn 7-ff (XM-_Xln) (ym-Y2n') -( X-y-
-(X (X _X

[(x2Xln) (X-X) + (Y2n-Yln)(ym-y2n)
f -(X n-ln( X-X )2n+(Y -Y n) ( -n,

V ((Xm_Xln 2+(ymyln) 2)

+ - m  _Xl2n)2 +(y n) 2+ J

+ 1 1+ m - in
Yln-ym ((Xm_Xin) + (ym -Yn)-1

X
)]

m~-m X_ 2n) +(m-y B-17

Summing the contributions of all the vortices to the downwash

at the control point of the mth panel:

2N4

n-iE m,n B1
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The angency conditions as defined by Eqs B-14 and B-15

will now be applied. Since the wing is planar, (dz/dx) = 0

everywhere and there is no dihedral. The component of the

freestream velocity perpendicular to the wing is U. sin a

at any point on the wing. Thus, the resultant flow will be

tangent to the wing if the total vortex-induced downwash at

the control point of the mth panel which is calculated using

Eq B-18, balances the normal component of the freestream

velocity:

Wm + U sin = 0 B-19

For small angles of attack,

wm U4ca B-20

The following example shows how a VLM is used to find

the circulation and lift about a swept, planar wing (from

Ref 4).

The wing to be analyzed has an aspect ratio of five (5),

a taper ratio of unity, and an uncambered panel (Fig 14).

Since the taper ratio is unity, the leading edge, the quarter-

chord line, the three-quarter-chord line, and the trailing

edge all have the same sweep, 45 degrees. Since

AR = 5 = B2/S

and since for a swept, untapered wing

S=Bc

it is clear that B = 5 c. Using this relation, it is possible
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to calcj'.ate all of the necessary coordinates in terms of

the parameter B. Therefore, the solution does not require

knowledge of the physical dimensions of the configuration.

The flow field under consideration is symmetric with

respect to the x-z plane (i.e., there is no yaw). Thus, the

lift force acting at a point on the starboard wing (+y) is

equal to that at the corresponding point on the port wing

(-y). Because of symmetry, we need only to solve for the

strengths of the vortices of the starboard wing... Furthermore,

we need to apply the tangency condition only at the control

points of the starlboard wing. However, we must remember to

include the contributions of the horseshoe vortices of the

port wing to the velocities induced at control points of the

starboard wing. Thus, for this planar symmetric flow, Eq

B-18 becomes

N N
Wm =EW + E wn

m n=1 m,n s n=1l~ p

where the symbols s and p represent the starboard and port

wings, respectively.

The planform of the starboard wing is divided into four

panels, each panel extending from the leading edge to the

trailing edge. As before, the bound portion of each horse-

shoe vortex coincides with the quarter-chord line of its

i" panel and the trailing vortices are in the plane of the wing,

parallel to the x axis. The control points are designated

*- .by the circles in Fig 15. Recall that (xmy,, 0) are the
49 -
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coordi-.ates of a given control point and that (xln ,v ln 0

and (x~f ~v 0) are the coordinates of the ends of the bound

vortex filament AB.

Using Eq B-17 to calculate the downwash velocity at the

control point (CP) of panel 1 induced by the horseshoe vortex

of panel 1 of the starboard wing:

- 4w L (.1625B) (-.0625B) - (.0375B) (.0625B)

r .125B) (.1625B) + (.125B)(.65)
I.((.1625B) 2+(.0625B) 2)0

1:125B) (.0375B) + (.125B) (.0625B)1

((.0375B)2 + (-.0625B)2) 0

i .1621
tip .+ -.0625B L + ((,1625B) 2+ (.0625B) 2)41

I02B [ + .0375B B 2)J
.0625B ((.0375B)2 (05B2

=ri (-16.353 - 30.934 - 24.232)
iii

Note that, as one would expect, each of the vortex elements

induces a negative (downward) component of velocity at the

control point. In addition, the velocity induced by the

vortex trailing from A to w is greatest in magnitude. Adding

the components together, we find

l~1 r (-71.5187)
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The downwash velocity at the CP of panel no. I (of the

starboard wing) induced by the horseshoe vortex of panel no.

1 of the port wing is:

p, 4 ff 1(.0375B) (.0625B)-(.1625B) (.1875B)

r(-.1250B) (.0375B)+(.1250B) (.1875B)
I ((.0375B) 2 +(.1875B) 2 )

(-.1250B) (.1625B)+(.1250B) (.0625B).

((.1625B) 2+(.0625B)2)

+ (-1875) -. 0375B
(-Z175B)((.0375B) 2+ (.1875B)'

1 - .1625B
(-.0625B)((.1625B) 2+ (.0625B)2)J

4nB

Evaluating all of the various components (or influence

coefficients), we find that at control point 1:

-1~ [(-71.5187r 1 1.2933r +1.0757r +.3775r4)

+ (18.515or +2.0504r +.5887r .i.2659r)]

At CP 2:

2 4-f-B (co27r-71.5l87r2+ll.2933r 3 +1.0757r4)s

+ (3.6144r 1 .1742r +.4903r +.2503r )]

At CP 3:
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3 4 (.8921Bo21 2-71.5187r 3 +11.2933r 4 )s

+ (l.548or +.7227r +.3776r +. 2179F)
1 2 34 p

At CP 4:

W4  1r [(1.6334r +3.8792r +20.2174r3 7.17

+ (.8609r I+. 4834r 2 +.289r3.16r4

Since it is a planar wing with no dihedral, the no-flow con-

dition of Eq B-20 requires that

W1  w2 w3  W4 -- UQs

Thus,

-53.0037r + 13.3437r2 + 1.6644r' + .6434r' 4,BU,1 234

23.8318r' 70.34451' + 11.7836r' + l.32601r 41rBU ,a1 23 4G

5.4272ri + 20.94011ir 71.14111' + 11.5112r' -4wBU t

2.4943r1 + 4.3626r2 + 20.5069r' 1351 4B~c

Solving for 'lI1'2,r 31 and r 41 we find that

r .02728 *(4wEU a)

r2 .02869 *(4wrBU00a)

r .02841 (47rBU~Ci)

r' .02490 *(4wBU a)
4 c

Having determined the strength of each of the vortices

by satisfying the boundary conditions that the flow is tangent
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to the su:face at each of the control points, the lift of

the wing may be calculated, Since the panels extend from

the leading edge to the trailing edge, the lift acting on

the nth panel is

In = p • U rn

which is also the lift per unit span. Since the flow is

symmetric, the total lift for the wing is

5B
L 2 r p •U r(y)dy

0

or, in terms of the finite-element panels,

4
L = 2pUW E rnAyn

n=l

Since Ay = 0.125B for each panel,

L = 2pU 47BUa (.02728+.02869+.02841+.02490)-.125B

pUC2 b w(.10928)

To calculate the lift coefficient, recall that A = b-c

and b = 5 c for this wing. Therefore,

C 1 .0928ri
LqA

Furthermore,

CL =dCL = .05992/degree

The theoretical lift curve generated using VLM is com-

pared in Fig 20 with experimental results reported in Ref 5.

The experimentally-determined values of the lift coefficient
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are for c wing of constant chord and of constant section,

which is swept 45 degrees and which has an aspect ratio of

five. The theoretical lift coefficients are in good agree-

ment with the experimental values.
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Appendix C -Analytical Wake Integration

The Biot-Savart Law is used to find the velocity in-

duced by a vortex filament segment at a point in space.

This calculation is performed for every vortex filament seg-

ment in a horseshoe vortex to find the velocity due to the

entire horseshoe vortex. In this appendix, the integration

for the case of a single-semi-infinite filament segment of

a helical wake is developed.

Following reference 6, let P be a point on a blade sur-

face. Let-the location of P be defined in the reference

frame of the rotating disk, as (rn, Ip, z ). Assume P emits

a helical vortex filament defined by

p p

This filament will induce a velocity at a point Q. Let the

coordinates of Q be (rQ. Q, zQ).

The velocity induced at Q by a segment T of the helical

filament emitted by P is

v -- p di x (r -r)
&vQ'p 4 0

where r is a vector from the origin to di, and rQ is a vector

from the origin to Q. di is an infinitesmal segment of the

helical vortex filament in the direction of the vorticity

vector. Therefore,
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dt~ -r sinel + r cosedeT - kdV
p ~ p3

rQ X Xi + yQ + z k

r =X i+ y + zkcos6:+ rsinGT k6K
p p p

Inserting these relationships into the expression of

*the Biot-Savart Law,

* ~6VQ f -rsin6dei+rcosedeGT -kd6F]x[(Xx) (y-y Z) iz]
0,p 4wQQQ

IN(X)2 +~ (YQ-Y) 2 + (Z0) 2]3/2

Separating these into i, j, and k components,

8V Qp{ry-~snd'~ZsinedOT-r(XQ-XcosedeE
Qp 4wfrYQYsfldkr

+rZ cosede i-k( -dOk6(y -y)I

(CXQ0 X)2 + (YQ2-Y) 2 + zQ2P3/2

Finally,

6V ! Eky-)rZ)o~d+j-( )r iOdQp 4w (QYr(Qcsdei-XQ-X)rZsned

+k[-r (y -y) sine-r (X -X) cose idel

This expression represents the velocity induced at

point P due to infinitesmal vortex filament Q. The velocity

at Q induced by an entire horseshoe vortex P is
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LP ~ 0 {ifk(yQrsin6)+r(ZQ+k6)cosOlde+Tf-k(xQ-rcosO)
- Qp 4nr

+r(Z +kO)sinelde+k[-r(y -rsine)sine-r(X -rcose)coseldel

[(X -rcos6) +~ (y rsine) +~ (zQ+k6)2]

This is integrable if x and y are zero. For all other

cases, a numerical solution to the integration is required.

57



Appendix D - Blade Element Method

The blade element method uses airfoil data to predict

the performance of a propeller configuration.

Lift and drag coefficients are obtained by assuming

that the induced flow past a blade element is the same as

past a wing of aspect ratio 6 (Ref 7). The forces on the

blade element of width dr and chord c are shown in Fig 6.

The thrust due to the element is equal to the sum of

the lift and drag forces perpendicular to the plane of rota-

tion. From Fig. 6,.

dT = dL cos * - dD sin

2
= p VToT c dr (CL cos * - CD sin *1

Similarly, the torque due to the element is equal to

the sum of the lift and drag forces in the plane of rotation

multiplied by the mean element radius, or

dQ = r(dL sin * + dD cos *)
2PV oT c r dr (CL sin + CD cos

Since efficiency is defined as output (thrust) power

divided by input (torque) power,

Um dT
2wn dQ

CL Cos -CD sin

2,rnr CLsin + CD cos
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The values of dT and dO must be found at every element

in order to find total thrust (T), total torque (0), and

hence input power (P) for the configuration. These quanti-

ties are found using the equations

rT~p 2
T =BdT = BrTIP PVToT C(CLcoso - C sino)dr

r HUB TO LD

rTIP 2
a =BdQ = BrTIP ]I PVToT C(CLsino + CDcoso)r drr HUB TO LD

The integrations are normally performed graphically.

In Ref 8, Cooper presents a methodology for using the

blade element theory to calculate blade performance. For

the cases analyzed, many of the parameters used by Cooper

are not applied. In an effort to simplify the calculations,

a modified version of his worksheet is used.

The worksheet utilizes user inputs which require some

knowledge of the airfoil/propeller that is being analyzed.

As an example, the zero-angle-of-attack lift coefficient

(Cli) is an input parameter (this is zero for the flat

plate). The input parameters are used to generate a span-

wise distribution of thrust and torque. Empirical data are

used to translate the inputs into performance data. The

lift coefficient correction curve for three-dimensional

(aspect ratio) effects is shown in Fig 21. Corrected lift

coefficient is the least manipulated performance parameter
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in the p-cedure, therefore it is used for comparison with

the results from the vortex lattice method.
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Appendix E - Momentum Theory

One of the analytical aspects which is peculiar to pro-

pellers that is not covered in this thesis is the influence

of wake extension due to flow acceleration through the pro-

peller. In this model, the wake is presumed to be a helix

with a helix angle independent o" axial location. Since the

shape of the wake is dependent upon the relationship between

axial and rotational velocity, the previously mentioned

change in axial velocity becomes important in finding the

actual wake shape.- An approximation for change in axial

velocity is predicted by the momentum equation (Ref 9).

The Rankine-Froude momentum theory for propellers assumes

that the propeller disk may be physically replaced by an

actuator disk that has an infinite number of blades and that

is capable of producing a uniform change in velocity of the

air stream passing through the disk. The momentum theory

is useful in determining theoretical maximum efficiencies,

but tells nothing about the effects of a finite number of

blades of finite thickness.

In developing the momentum theory, a perfect incompres-

sible fluid in a constant energy (irrotational) flow is

assumed in front of and behind the disk, but not through the

* disk itself. The streamlines of the flow past the disk are

shown in Fig 11.

*' Referring to Fig 13, the pressure in the freestream is
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p and ti.- velocity is V. As the air stream approaches the

front disk face, the velocity increases until it . ieves a

value V+v through the disk anC at the same time, the pres-

sure drops off to a value p'. At the disk, energy is added

in the form of an increase in pressure p. Aft of the disk,

the pressure drops to the freestream value, and far behind

the disk, the air has a velocity V+vl. The high-velocity

stream of air behind the propeller is referred to as the slip-

stream or wake.

Although Bernoulli's equation does not hold for flow

through the disk, it. does hold for the flow in front of and

behind the disk; thus we may write

total head in front of disk = H

• = Vp + = p- + o(V+v) 2

22E-

total head behind the disk = H1

p + &p (V+v) 2  + P(V+vI) 2." p+ 2 =-+ 2*... E-2

The change in pressure across the disk must be equal to

the change in head, or, using the second evaluation for H1

in Eq E-2 and the first evaluation for H in Eq E-l,

2 P2
Ap H1 H p + P(V+v 1 )- (p+ )

2

- p(V+vl/2)v I  E-3

where Ap is the average change in pressure over the disk.
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The thrust acting on the disk is

T-AAp

where A = disk area; or, from Eq E-3,

Tm A-p(V + 1 v E-4
2

To obtain a relationship between vi and v it is neces-

sary to write another equation for thrust. This may be done

by considering the change in momentum of the air produced by

the disk. Newton's second law,

ma mdV
- m dt

states that the thrust is equal to. the change in axial momen-

tum per unit time. The mass per unit time is the mass flow

through the disk,

0 = AP(V+v)

and

dV =v

so that

T =- AP(V+v)vI  E-5

Equating Eq E-4 to Eq E-5 we have

Ap (V+vl) v, = Ap (V+v) v1
2

and so

v 1 = 2v

Thus, the momentum theory states that one-half the
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velocity increase occurs in front of the disk and one-half

behind the disk.

* The momentum theory shows how the velocity in the slip

stream can be significantly greater than the freestream, vel-

ocity (particularly for heavily loaded propellers). This can

consequently stretch the wake a great deal. Remembering that

the Biot-Savart Law has an inverse-squared distance term, it

becomes apparent that the positioning of the wake filaments

could become significant for the case of the heavily loaded

propeller.

The model used in the current analysis uses flight speed

as the axial component of velocity. As a next step, an iter-

ative solution would be required to get a better representa-

tion of the wake location, and consequently a more accurate

solution.
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Velocity Variation

Fig 13. Momfentum Theory Flow Conditions
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Fig 17. Wake Model for Propeller
9. 97



.a7

Traitlng vortex
(Pbra((e1 to0 the

Fig 18. Nomenclature for a Finite Length Vortex Segment
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